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Abstract 

A new analytical method is presented for the separa- 
tion of two or more closely overlapping X-ray diffrac- 
tion lines using the narrowly distributed Gaussian 
function and one-dimensional fast Fourier transform 
pair. To test the method, the diffraction lines associ- 
ated with characteristic Ka~ and Kce 2 rays are 
measured by an X-ray diffractometer using a Brazilian 
quartz powder as a standard sample. It is found that 
the observed diffraction lines can be completely sep- 
arated into Kal and K a  2 lines and that the accuracy 
of those diffraction angles is better than 2 x 10 -4. 

I. Introduction 

The accuracy of a lattice constant in material as 
measured by an X-ray diffractometer depends entirely 
upon the observed diffraction angles. Although sys- 
tematic and accidental errors are unavoidable, statis- 
tical errors can be reduced by using more data. In 
the determination of precise lattice constants, there- 
fore, a large number of data must be observed cor- 
rectly by some X-ray diffraction technique. However, 
it is unavoidable that the d;ffraction distribution of 
characteristic X-rays Kal and Ko~2 for small diffrac- 
tion angles overlaps greatly. This often makes it 
impossible to decide the exact diffraction angles by 
adopting ordinary peak-search methods. The com- 
mon procedure for determining the diffraction angles 
is to construct diagrams of diffraction lines and to 
obtain their medium point of angular width at half- 
maximum intensity from the observed intensities. This 
procedure is not feasible in the case of closely overlap- 
ping diffraction lines. 

For well resolved peaks, diffraction angles can be 
determined as the angles where the first derivative of 
the line profile is zero or as the mean of angular 
values on the wings of the profile where the second 
derivative is zero. This method is used in the Philips 
PW1700 powder diffractometer system (Philips, 1983) 
and is capable of rapid analysis, giving satisfactory 
data for identification purposes. However, when two 
or more diffraction lines overlap, the diffraction 
angles calculated become increasingly ambiguous if 
not indeterminable. 
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The purpose of the present work is to separate 
overlapping lines associated with the Ka, and Ka2 
distribution and thus determine the precise diffraction 
angles by adopting the one-dimensional fast Fourier 
transform pair (Cooley & Tukey, 1965) and narrowly 
distributed Gaussian function to an X-ray diffraction 
pattern. 

2. Separation of overlapping diffraction patterns 

The diffracted intensity distribution is composed of 
contributions from the characteristic Ka, and Ka2 
X-rays. The diffraction spectra of Kal and Ka2 can 
be described by the impulse symbol 6(q~) (Bracewell, 
1978) as 

I~[  q~ - ~p~( hkl) ], (1 a) 

I2~[ q~ - q~2( hkl) ], ( 1 b) 

where q~ corresponds to the observed angle 20; ~o, 
and ~o2 are the theoretical diffraction angles 201 from 
the Ka, and 202 from the Ka2 component, respec- 
tively. I, and I2 are the diffracted intensities con- 
tributed by Ka~ and Ka2, respectively. A typical 
intensity distribution is shown in Fig. 1. The shape 
is due to the crystalline microstrain, to the uneven 
X-ray diffraction caused by atomic thermal vibration 
within unit cells, and also to the finite width of the 
incident X-ray beam. This intensity distribution can 
be separated into two single distribution functions 
W(q~) (dotted curves in Fig. 1). The function X(q~) 
for the measured intensity distribution (solid curve) 
in the narrow range q~0 < - q~-< q~, on the ~0 axis is 
expressed as 

X ( q~) = [ l~/ W(O) ] W[ ~o - ~o~( hkl) ] 

+[I2/W(O)]W[q~-~p2(hkl)], (2) 

where W(0) is the value of W(q~) when q~ = 0. 
The diffraction angle for either characteristic Ka~ 

or Ka2 rays and the distribution function W(q~) must 
be previously known to separate the two distribution 
curves on the q~ axis using (2). As a means of finding 
the diffraction angle, we put ~o =0  at an arbitrary 
point along the extended line of the q~ axis and define 
a new symmetrical function, which in the interval 
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- ¢ ,  -< ¢ - q~, is expressed as 

X ( q~ ) = [ 11/W(O ) ]{ W[ q~ - ~o I (hkI) ] 

+ W [ ~ +  ~l(hkl)]} 

+[I2/W(O)]{ W[ ~p - ~2( hkl) ] 

+ W[ ~ + ~P2(hkl) ]}. (3) 

The pattern given by (3) can be regarded as the 
one-dimensional Fourier transform pattern of the 
product of the wave x(~) which combines two cosine 
waves with different frequencies on the 1 /~  axis (call 
it the ~, axis), and the distribution function w(z,) 
which peaks at v = 0, i.e. 

X (~ )=~x (~ , )w(v ) exp ( -2c r i~ ,~ )dz , ,  (4) 

where x(v)  contains information about the locations 
of the diffraction lines from the Ka~ and Kce 2 radi- 
ation. The exact diffraction angles may be obtained 
if x(~,) can be calculated from X(~p). X ( ¢ )  is 
expressed as the convolution of the distribution func- 
tion W(¢)  and the diffraction spectra of Ka~ and 
Kce2, and is a positive real function. Hence the inverse 
Fourier transform is applied to (3) in the range 
- ¢ ,  <- ¢ - ~p,, and then 

~ , .  X(~o) exp (27rit, cp) d~o 

=x(~)w(~) 

= {[211/W(0)] cos 2~r~,~(hkl) 

+[212/ W(O)] cos 27r~,e~(hkl)}w(v) (5) 

(Betts, 1970), where e ~=  e 1 - ¢ 0 ,  e ~ = ~ 2 - e 0 .  By 
numerical analysis of (5), w(~,) is determined from 
the envelope of x(~,)w(~,) and then the composite 
wave x(.~,) can be obtained, x(v)  is composed of the 
sum of the two waves 

2I~ cos 2¢r~,~p~(hkl)/W(O) 

and 

2/2 cos 2 ~r~,e~(hkl)/W(O). 

To separate the waves x(v) is multiplied by the 
distribution function w'(~,) which has a range 
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Fig. I. A typical example of two closely overlapping X-ray diffrac- 
tion lines, a = ~Pl - ~pw/2, b = tp 2- ~pJ2, c = ~01 + ~pJ2, d = 
~p2+~p~/2, where ~Pw is the distributed width of the function 
w(~). 

narrower than W(q~) on the ~p axis {note that w'(~,) 
here is the modification of the Gaussian function 
exp [-v2/(202)]}, and then the product of x(~,) and 
w'(l,) is Fourier transformed. As seen in Fig. 2, the 
intensity pattern has been clearly separated into each 
peak, corresponding to its exact diffraction angle. 

3. Analytical process 

Values of intensities and 20 obtained by a diffrac- 
tometer must be registered in a discrete numerical 
series to be processed by a computer. The number of 
data points N must satisfy N = 2 m, where m is an 
arbitrary positive integer. A set of intensity data for 
two overlapping reflections can be expressed as 
follows: 

x ( ,p ) = {[ I , /  w ( 0 )  ] w[~-~,~(hkl)] 

+[ 12/W(0)] W[ tp - ~p~(hkl)]} 

N - I  

x 2 a ( ~ - A ~ p )  
p = 0  

= X(A~pp) (6) 

where 20 = q~. The intensity X ( p )  at any position p is 

X (p) = [I , /W(0)] W(p - n,) 

+[12/W(O)]W(p-n2),  (7) 

where ~p~(hkl)= A~pnl, ~p~(hkl)= A~n 2 are the theo- 
retical diffraction angles from Kal  and Ka2 radiation, 
respectively. 

Firstly, in order to produce a wave pattern U(k) 
on the v axis, expressed by 

N - - 1  

U ( k ) =  ~. X ( p )  exp(2"n'ikp/2N), (8) 
p = l - - N  

the inverse fast Fourier transform (IFFT) must be 
adopted to the numerical series X(p) .  The ordinary 
IFFT method (Papoulis, 1977) produces in the nega- 
tive domain a numerical series X ( - p )  symmetrical 
with regard to p - -0 ,  and evaluates U(k) on the ~, 
axis by calculating X ( p )  from p = 1 - N to p = N -  1. 
This method takes a considerable time because the 
calculating process requires double the quantity of 
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Fig. 2. An example of the X-ray diffraction pattern completely 
separated into two diffraction lines by the new analytical method. 
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data. To avoid this disadvantage, therefore, a new 
analytical method has been developed. The new ana- 
lytical method deals with the data obtained by using 
the inverse fast Fourier transform that has been 
deduced from the inverse Fourier transform, given by 

IN-I 1 U ( k ) = 2 R e  • X(p) exp(27rikp/2N). (9) p=0 
This equation is a modification of (8). U(k), calcu- 
lated from k -- 0 to k -- 2 N -  1 using (9), represents 
the product of the numerical series x(k) of the wave 
which combines the two cosine waves with different 
frequencies on the ~, axis, and the numerical series 
w(k) of the distribution function, as follows: 

U(k)=x(k)w(k) 

= f iE/ l /W(0)]  cos (2zrn~k/2S) 

+[2UW(O)]cos(2zrn2k/2N)}w(k). (10) 

Next, the distribution function w(k) is estimated 
from the envelope of U(k) to give x(k), which is 
informative of the spectral position of the X-ray 
diffraction. Thus 

x ( k ) =  U(k)/w(k). 

x(k) is then multiplied by w'(k), of which the 
spectral distribution is narrower than W(~p) on the 
~p axis. Therefore U'(k)= x(k)w'(k). Here w'(k) is 
the Gaussian function, given by 

w'(k)=exp[-2s2k2/(2N-1)2], (11) 

ation at 292 (1) K. The specimen is BraZilian quartz 
powder (a-SiO2), which is a commonly used standard 
sample for the calibration of an X-ray powder diffrac- 
tometer. 

The heavily overlapping diffraction intensities 
between Ka~ (A~=2.28962A) and Ko~ 2 (A2 = 

2.29351 A) (International Tables for X-ray Crystal- 
lography, 1962) for the 110 reflection were measured 
in the range 54.90 to 56.18 ° with a step width of 0.01°; 
the 128 pieces of data were entered into a personal 
computer as a discrete numerical series. The observed 
diffraction pattern and the pattern separated into K a  1 

and Ka2 in this analysis are shown in Figs. 4(a) and 
(b), respectively. The diffraction pattern in Fig. 4(a) 
cannot be separated into Ka~ and Ka2 peaks by 
means of graph-drawing or ordinary peak-searching 
methods, but the present method can distinguish the 
overlapping diffraction lines and gives precise diffrac- 
tion angles for Ks, and Ka2. The analysed values 
for 20 of Ka~ and Ka2 were 55.55 (6) and 55.67 (5) ° 
respectively, and they agree with the theoretical 
angles within an accuracy of 0.011 °. 

The slightly overlapping diffraction intensity of the 
302 reflections was measured between 20 = 130.30 
and 132.86 ° with a step width of 0.01 °, giving 256 
pieces of data. The analysed peaks of Ka~ and Ka2 
are in good agreement with the observed peaks as 
found by graph drawing or by the ordinary routines 
of the automated diffractometer. The analysed 20s of 
Ka~ and Ka2 were respectively 131.48(8) and 
131.93 (0) ° and agree with the theoretical angles of 
a-SiO2 within an accuracy of 0.007 °. 

its median value is 1, the parameter s determines the 
distribution range, and its value is a real number 
6 <- s <- 8 which is less than 2/5 of the parameter which 
determines the distribution range of w(k) on the v 
axis. [The value of the parameter of the estimated 
function w(k) was about 20.] 

Finally, the fast Fourier transform (FFT) is applied 
to the U'(k) obtained and the discrete numerical 
series describing the X-ray diffraction intensity pat- 
tern calculated from U'(k) is then given by 

2N-1 
X'(p)= ~, U'(k) exp(-27ripk/2N). (12) k=0 

Therefore, the intensity distributions in the vicinity 
of Kal and Ka2 have clearly been separated. Deter- 
mining the peaks by noise elimination and by adopt- 
ing the interpolation method brings out the precise 
diffraction angles 20~(hkl) and 202(hkl). A flowchart 
of the whole procedure is shown in Fig. 3. 

4. Experimental and analytical results 

A diffraction pattern was measured by an X-ray 
powder diffractometer using V-filtered Cr Ks  radi- 

IFFT 
[Inverse Fourier transform 
of X( p)] 

Calculation of the 
distribution function 
w(k) 

I Calculation of x(k) 

I Making up U'(k) 
U'(k)=x(k)w'(k) 

? 
FFT 

[Fourier transform of U'(k)] 

I 
Peak search of 
calculated patterns 

Calculation of 
diffraction angles 
by the interpolation 
method 

Display of I 
analysed angles 

Fig. 3. Flowchart for the calculation of precise diffraction angles. 



S. TOKITA, T. KOJIMA AND I. NISHIDA 215 

The diffraction lines from the (212), (203) and (301) 
planes of a-SiO2 are known as the pentafold lines 
and are used to examine the resolving power of an 
X-ray diffractometer. In fact, the fourth line is an 
overlapping line consisting of Kal and Ka2 diffrac- 
tions from the (301) and (203) planes respectively. 
Fig. 5 shows the observed and analysed results of the 
512 pieces of data relating to the diffraction intensities 
of a-SiO2 which appeared as the pentafold lines 
between 2 0 =  110.68 and 115.80 °. Table 1 shows a 
comparison of the analysed and theoretical diffrac- 
tion angles, 20~ and 20th , by Cr Ka characteristic 
X-rays for a-SiO2.  The lattice constants used for the 
calculation of 20th were determined using all the 
back-reflection lines of Cr Kal at 292 (1)K. These 
values are calculated through the use of the Universal 
Crystallographic Computation Program System pro- 
gram LC3 containing a least-squares refinement, 
reported by Sakurai (1967). The lattice constants 
obtained were in good agreement with the literature 
values (Helwege, 1975). As shown in Fig. 5(b) and 
Table 1, the analysed result has distinctly separated 
the six diffraction angles. 

5. Discussion 

In analysis of X-ray powder diffraction intensity pat- 
terns, there are some unavoidable errors owing to the 
facts that the patterns are asymmetrical and that their 

Table 1. Comparison of analysed and theoretical 
diffraction angles 

Analysed value Theoretical value 
Miller Characteristic (°) (°) 
indices X-rays 20~ A 2 0 ~  * 20th A20th * 

55.56 (1) Cr Ka~ 55-55 (6) 0-11 (9) 0.10 (3) 
(110) Cr K a  2 55.67 (5) 55"66 (4) 

111-88 (9) Cr K a  t 111.87 (4) 0.29 (4) 0.28 (9) 
(212) Cr K(~ 2 112.16 (8) 112-17 (8) 

(203) Cr Kcq 112.76 (4) 0.29 (7) 112.77 (6) 0-29 (4) 
Cr K a  2 113-06 (1) 113.07 (0) 

(301) Cr K a  I 113.14 (4) 0-28 (6) 113"15 (3) 0"29 (6) 
Cr K a  2 113.43 (0) 113.44 (9) 

(302) Cr K a  z 131.48 (8) 0.44 (2) 131-48 (9) 0.43 (4) 
Cr Ko~ 2 131.93 (0) 131.92 (3) 

The theoretical values are determined by lattice constants of a-SiO 2, a =4.9124 and 
c = 5.4039 A. 

* A20 is the difference between Ka~ and Ka 2 diffraction angles from the same 
diffraction plane. 

peaks shift towards smaller 0, depending upon the 
level plane of the specimen, the vertical diversion of 
some incident beam, and the absorption by the speci- 
men of some of the incident beam. The degree of the 
shift in 0 is expressed as follows (Wilson, 1950): 

sin 2 0 t cos 0 A 2 sin 2 0 
AO . . . .  ~- 

4/~L L[exp (2/~t/sin 0 ) -1 ]  6L 2 ' 
(13) 

where /z is the linear absorption coefficient of the 
specimen, L is the distance between the specimen 
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Fig .  4. ( a )  The observed heavily overlapping diffraction line from 

the (110) plane of  a - S i O 2 .  ( b )  The diffraction lines from the 
(110)  plane are separated into two lines from K a t  and K a 2  

radiation by the new analytical method. 
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Fig .  5. ( a )  The pentafold lines of  a-SiO2 measured by the X-ray 

diffractometer. (b) The six diffraction lines of  a-SiO2 are separ- 
ated into the K~,  and Kot 2 diffraction fines from the observed 
pentafold lines. 
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and the counter slit, t is the thickness of the specimen 
and 2A is the breadth of the spot on which the incident 
beam falls. In this case, where the vertical diversion 
of the beam is neglected, both t and A are variable 
factors in the experiment. If the value of /.1. = 
143cm -1, estimated from the mass absorption 
coefficients of oxygen and silicon (Cullity, 1978) and 
the density of SiO2, and the goniometer radius of 
L=  175 mm are entered into (13), AO is found to be 
less than 9 x 10 -3° for 20 > 90 °. On the other hand, 
the analytical process of a personal computer is 
effective to six figures and its precision of calculation 
is better than 0.001 °. The difference between 20a and 
20th is at most 0.02 ° because the goniometer has a 
precision of 20 =0.01 ° and is scanned with a step 
width of 0.01 ° in 20. All errors involved in the analysis 
can therefore be reduced through the mechanical 
accuracy of the goniometer. Consequently, it is 
definitely possible by adopting this analytical method 
to obtain a higher analytical accuracy when the 
accuracy of the goniometer is improved and the step 
width is reduced. 

The authors thank Dr T. Fujii of the National 
Research Institute for Metals for his encouragement 
and advice. 
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Abstract 

The structural description, symmetry and diffraction 
properties of incommensurate modulated phases are 
revised using a real-space framework. The superspace 
formalism usually employed is reformulated using a 
practical description where no multidimensional 
geometrical constructions are needed. The incom- 
mensurate structural distortion is described in terms 
of 'atomic modulation functions' where the internal 
space is only considered as a continuous label for the 
cells of the non-distorted structure. Hence, no atomic 
positions or thermal tensors in a multidimensional 
space are defined. By this means and with the 
introduction of the concept of 'atomic modulation 
factors' a general expression for the structure factor 
is proposed which constitutes a direct generalization 
of the standard expression for a commensurate struc- 
ture. The concept of superspace symmetry is reduced 
in this approach to a simple relation between the 
defined atomic modulation functions, which can be 
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directly translated by means of the structure-factor 
expression into the symmetry and extinction rules of 
the diffraction diagram. The advantages of superspace 
formalism in the analysis of commensurate modu- 
lated phases are also discussed. The use of superspace 
groups for describing the symmetry of superstruc- 
tures, contrary to some recent claims, does not for- 
mally reduce the number of structural parameters but 
may often allow some of them to be neglected. 

I. Introduction 

In the last few years, the structural analysis of incom- 
mensurate (IC) modulated phases has greatly pro- 
gressed through the introduction of the superspace 
symmetry concept (de Wolff, 1974, 1977; Janner & 
Janssen, 1977, 1979, 1980; Yamamoto, 1982b). The 
number of IC structures which are determined using 
superspace formalism is increasing constantly (van 
Aalst, den Hollander, Peterse & de Wolff, 1976, 
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